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ABSTRACT

Let (X,Y), (XI,YI),...,(X n,Y ) be i.i.d. RrxR-valued random vectors

with EIYj < , and let Q (x) be a kernel estimate of the regression function
n

Q(x) = E(YIX = x). In this paper, we establish an exponential bound of the

mean deviation between Qn (x) and Q(x) given the training sample Zn =

kXI,Y 1 ... , Y under the conditions as weak as possible.
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1. INTRODUCTION

r

Let (X,Y), (XIYI),...,(X ,Yn ) be i.i.d. R rR-valued random vectors with

E1Y, < -. To estimate Q(x) = E(YJX=x), the regression function of Y with

respect to X, Nadaraya (1964) and Watson (1964) proposed a class of kernel

estimates of the form n nX.-x X.-x
Q (x) K(h)Y K(
n L- i / h '

i=- j=-

rwhere K is a probability density function on R, and h=h is a sequence of
n

positive numbers. Write

X.-x X.-x
W n(x) = K(- )/ { K( (-'2ni h , h' 2

j=1

we define W .(x) 1/n, i=1,2,... ,n, when 0/0 appears. Many scholars studied

convergence problems of these estimates from various points of view. For

the universal consistency, one can refer to, for example, Devroye and Wagner

(19801), Spiegelman and Sacks (1980). For the pointwise moment-consistency,

see Devrove (1981). For the pointwise a.s. consistency, see Devroye (1981),

Greblicki, Krzyzak and Pawlak (1984). Zhao and Fang (1985). In this paper,

we study another convergence of these estimates.

Let Zn = (X1,YI,...,Xn,Y) be a training sample, n = gn(xZn) be an

estimate of Q(x). In some problems, we are interested in the following
nmean deviation of gn given the training sample Z

D(gn ) = E{Ig (X,Zn) - Q(X)IIZn} 
n n

(3)

- f~~rgn(x,Zn) - Q(x)IF(dx),

where F denotes the distribution of X. Devrove and Wagner (198011) proved

.2..
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that

rn- D( ) 0 a.s.

for the kernel estimates Qn(x) of Q(x), if the following conditions are

satisfied:

ti) Y is bounded,

(ii) F has a density f,
(4)

(iii) K is bounded and

fRr(x)dx <

where

*(x) = Sup Ktu), xeRr

llilli lxii

rand 11.11 is the L, norm or L norm on R

(iv) hn-O and E exp(-anh r) < for
nn n

any a > 0.

In this paper, we establish an exponential bound for the above mentioned

deviation of Qn" Take 11.11 as L, or L norm, and denote by I(A) or I the

indicator of set A. We establish the following

Theorem. Let Qn(x) b a kernel estimate defined by (1). Suppose that the

following conditions are satisfied:

(i) Y is bounded.

(ii) F, the distribution of X, has a
density of f. (5)

(iii) There exist positive constant a

and ° such that

r
K(x) I x II xe r .

£r

(iv) h-O and nhr. as n-.

... .. ... . ... . . ... . .. . .... . . .. . .. . . .



Then for any given e > 0, we have

P{D(Q n) >} < e-cn. (6)
n'. ,

where C > 0 is a constant independent of n.

Obviously, we need only to give the proof for L norm. We shall

indtroduce some lemmas in section 2, and give a proof of the theorem in

section 3.
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2. SOME LEMMAS

For simplicity we use the following convention: E,El1 2 ... CC0C

.... a,81,,6, ect., are all constants independent of n. #(A) denotes the

rcardinal of set A. S~ ur.Rr: I ju-xq,< o. F* and X* denote the outer

measure generated by F and the Lebesque measure X(on Rt), respectively. Fn "'

denotes the empirical measure of Xn = (XI .. ,X) We now give four lemmas1' n

which are needed in the sequel. Ir
Lemma l(Besicovitch Covering Lemma). Let E be a bounded subset of R

and let K be a family of cubes covering E which contain a cube D with
x

center x for each xGE. Then there exist points {Xk} in E such thatk%
(i) E cUD,

(ii) there exists a constant a depending only on d such that

I(Dk)<o.
Lk xk

For the proof, refer to Wheeden and Zygmund (1977), pp. 185-187.

Lemma 2. Let T > 0 be a given constant. Suppose that F has a density

f. Then for any given c > 0, we can choose 81 > 0 small enough and 8, > 0

large enough such that the set

Sr )r CA
E {XES°'T:81( 2c) < F(S x < (2o) (7) .1

for any pe(0,l)}

satisfies F (ST - E) <

Note that for any Borel-measurable set EcE , we have .7.

< f(x) < 82, for almost all x6_E(with respect to A). ",'

Proof. Set

" .~
-. p

4._i,
'7 .

• .......



E r= xs Sup <<A(S ,)/F(SxO >) /6}0,XT: Op1 X, xo

E= {xeSOT Sup <<F(SX )/X(S > B11

For any xCE 1 there exists a cube S X with ot(0,1) such that A(S )O

> F(S X ) >F(S x )/1, By Lemma 1 there exist x kCE1 and S A S ksuch

that X(Sk > F(Sk)V0l9 E1 C kSk d I(S )< a. ThusK I k
F (E) < F(US) < VF < Bj kX(

'J k)j(S W)dX c1ax(US < B X(S )

V'(E~if usdas~a~ we hk v 1*E k I ,2T

Taking a~ > 0 sml nuh e aeF( /2. In the same way, we have

k ('7)< FR )y/a a/,.Taking 8, large enlugh, we can make X(E,) small

enuhand, by the absolute continuity of F with respect to X, F (E) < c/2.

The lemma is proved.

Fx6,00,1/2a) and assume that h =h 6(0,1). Set
n

G n = XESO0T: F n(Sxh) < 6F(S xh )1. (8)

Lemma 3. Suppose that F has a density f, h =h n6(0.1) and nn -~*Then

for any given E > 0 we have

P{F (G)n > e < e

Proof. By Lemma 1, there exist x 6G and S =S such that
kn k xk h

* V r
Gnc U cSk (S5k) < a- Partition R into sets with the form

r
II f(i -1)eh,i eh), where i1,...,i = 0,±l,±2,... and e is. a fixed constant to

j=1 jr
be chosen later. Call the partition 0, and write

0'-{B60: B c S 0,2T),
r

U = -G.BC B, 0,1 fl [-1+e,l-e),
j-1



C~ x Sk U B0, BcSB C xk + h(S0 1j-S O1 )

x Xk

ThenI
Xk(C = ( '-Ol(hr( _,r,

< reA(S~)

Since

G G aU (S -j B) cUkC
k k B6 0,BcS k k xk

we see that

k(G-G) < X(C* < reV X(Sk
Lk k Lk

< reju VI(S kdW < reaX(U Sk)

<reaX(SO 2 )

SHence we can choose e small enough to render X(G-G) small enough and
F(G-G) < c/4. By (8) and the fact that a6 < 1/2, we get

F (G) <F (G) < F (Sk< 6V F(S)n -- n nLkn/-k k

~f V1I 5 )d < 6oF(US ) Wa(G)
JusL k - k

Therefore <~()

F(G) -F (G) > F(G) E /4 - FG) = ZF(G) - I,
n

and

F (G )> e implies F(G) -F (G) > 04.

Fo ny H c 0'. we write uH -U~B. Te

{F*(G*)>~el cUHO-F(UH)-FU)E/}

Assume that ce(O,1). By Hoeffding's inequality,



Sup AP{F(A)-F n(A)>E/4} Sup Aexp{-n(E/4) 2/(2F(A)+c/411

Noticing that h{H :Hco0 2 0 and h-r = o(n), we get

C h- r

P{F*(G*)>c} 2 0 pA{F(A)-F (A)>e/41

< exp(-C n),

and the lemma is proved.

Lemma 4. Suppose that i g(x)IPF(dx)<oo for some p > 0, then
~ r

(g(u)-g(x)(PF(du)/F(S 0

x,h h

for almost all x(with respect to F).

Refer to Wheeden and Zygmund (1977), p. 191, example 2-0.



3. PROOF OF THE THEOREM

Assume that IYI <S M. Without loss of generality, we can assume that

00 1 in (5)(iii). It is enough to prove that for each fixed T > 0,

fS ,T1Qn(x Q(x)IF(dx) > El< e . (9)

By Lemma 2, there exist a2 B 2 8(E) and a compact set Ec E such

that F(S -E) < E/8M, wher E is defined by (7). Henceo,T

iS En (x Q(x)IF(dx) < 2MFkS T-E) < c/4.

Fix 66(0,1/2a). By Lemma 3, there exists a compact set H nsuch that

HS c Txe F (S )>6F(S )1, (10)
H 0,Tx n x,h x,h

and

Hence
-G n

P{s -Hf~x Q(x)IF(dx) > e/41}
OS ,T- n Inx

Therefore, we need only to prove that

P{JH nFlEQn(x) -Q(x)IF(dx) > E/2} < e . (12)
n

For xeH n nE, by (5)(iii), (7) and (10), we have

nn

VK(L- > noFS > >na6F(S )
L h - n x,h -x,h

j=1

> ~~~ r r
'-h

and f(x) < B1. Write C3 = 8/(aX68 2r we see that

IQn Q(x) - Q(x)if(x)dx
nf n
- C3(nhr JH nnE L K( h)(YiQ(x)ldx.



There exist finite positive constants m,a,....a~ and disjoint regular cubes

A1 l...,A such that K*(x) = Z a.iI A(x) satisfies

J Kr - K*(x)Idx < e/(8C M).

Here a regular cube means a r-fold product of one-dimensional compact intervals.

Thus

V X.-X Xi-

P(-n') IH L h - K* M---)Y -Q(x))Idx
n

" C M(nhr f \ K h~ K h )d

"2C 3 MfK(x) -K*(xc)fdx < c/4.

Take F-1 = /(4C3) To prove (12), it is enough to prove that

n

P{(nh K(H )(YK

-Cn
2

It is sufficient for any E > 0 and any regular cube A to prove that

n

P{(nhr) -f (X (13
jfHfE A x+hA i i Q(x ))Idx > 2(13

nC

P{(nh 'f nHE I4~ A( (( -~)d~~

-C n - (14)

We proceed to prove (13). To this end, we construct the pratition (D

ofR mentioned in the proof of Lemma 3. Assume that A - H xx a.. n

- r i-i
min a. > 2e. Set A nI [x.+e,x.+a _e). A= B,

1 i Ax UBe,Bcx+hA



a, 7,

C x + hA- A cx + h(A-A)- C.x x x

It is easy to see that we can make X(A-A) arbitrarily small by choosing e

small enough. We have
n

(nh-r)-IHnl I I+ (Xi(Yi-Q(X )Idx
i=1

n

< (nhr) if 1  IA (Xi)(YiQ(Xi))Idx-f HnE / Ax
i-i

+ th-rfFn(C*)dx

n
(nh r I (X 1YQ(X ))Idx

i-i

+ 2MA(A-A).

Here we use the fact that fv(x+hD)dx = hrX(D) for any r-dimensional probability

measure v and any Borel set DcRr. We can choose e such that 2MX(A-A)<c2 /2.

Note that for Be-0, X{x.Bcx+hA} < C4h
r, and UxH fE{X+hA}cS0, 2T for small h.

n

Hence, for large n, we have

n

(15)<C 4n B L IB(Xi)(Yi-Q(Xl)) + 2/2.
i-i

Set e3 = e2 /(4C4 ). To prove (13), we need only to prove that
n -- n

.- n/ ( - < e)y n, (16)

n

P i IB (Xi)Q(Xi - Q(x)dF,>n3} < e (17)"" P{~LB6 B ) 1 JB<e(1)".'

Let N be a Poisson random variable with mean value n, which is indep-

endent of ,(X2 Y,)..... In the sequel, we use for VB .' Notice
(1 Y ) '2' 2 Noic

*
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That B's are disjoint, we see that for t (oa)

N

Ee)tB ~ BkXi)Yi)l ~

00
t -n

= exp{1EIB()I ( 1)y I

N

So that, {I 'I(X.Y A nrB Q(x)dFIBC-DI is a group of mutually independentB JB -

variables. SetN

Z(B,N) ='I (X )y. n Q.dF.
L B ii f
i= 1

t -t
for t > 0, notice that e -t > e + t,we have

P{ I Z(B,N)f ine3} I: exp(-itne 3)Eexp(t' fZ(B,N) "

=~~~ ex(~n3 tBGD'E{exp(ttZ(B,N)I )}

<exp(-4tne 3)11 B&O'(Eexp(tZ(B,N) + Eexp(-tZ(BN))]

(18)

+exp(ine I(X(exp+tE (X)(e1)

+ exp(nEtI B(1)(~{ep~BXe +]*

tll-t~l-

* < exp(-itne )eoIn(expentelytM-1)

* ~ ~ TakeAtn )20l) we se th exp -M-i X t)( He, we ca tk t> uc ta

3 BJ 1Cn(9

:S~ Lx(in IBX) Qx~(.xdF > m l 3}3 i-i

tm 2M2.
Take *... ....Mw s et a tM 1 <tH n e w a a et uh t a



Wrie ~- ( 1,X,..).By Jensen's inequality, for t > 0 we have

{ I (X )Q(X n Q(x)dFI _'n

L / i i JB 3

=P{j' E(Z(B,N)jA)jI .ne ~n3 iL

P{Ex(/in 3 EEPt IZ(B,N)I IA

-exp(-itne )E(exp(t'IZ(B,N)1D].

By (18) and (19), we can take t > 0 such that

N I (X1 )Q(X.) -~~F a~ ine3 < e n(0

L L B nJi BQ 3d

Note that Nn

VVI (X )y. V I ('C )y. MIN-ni,
L ,B i. i B i -

N n

I L B(X i)Q(Xi) L IBXi 1QXi) I-j

we have
N n

P{ VIV I(X )Y I (X )y 1 e(1
L L B i i Bii ~n 3y(1

-Cn
7

<P{IN-nj> ne /(2M)j < e

14 n

P( I ('C )Q(x ) 1 (X.)ine
L L B i i -/B 1 n 3}

i*I i-i(22)
IC-

< el



S..

From (19) - (22), (16) and (17) follows, and (13) is proved. It remains

to prove (14). To this end, we need only to prove

-C n
P(< e , (23)

i=1 ...

where

Z(u) =hf I (u)IQ(u) -Q(x)ldx

frx+hAR
(24)

<2Mh I Iu-x)dx 2MX(A) C8

Hence, we have

N n

Z(X ) Z(X)I C8 N-nI,Liizi i=l l

and N.-N n ,"-'

PfVZ(X ) ( - ZL i (xi)I _
i-i i=1 !_L

(25)-C n
< P(jN-n>nc2 /(2C8)} < e

2

For t > 0, we have

N N

P( Z(Xi)>n 2}< exp(-'tne2 )E{exptt L Z(X )

i=l (26)

- exp{- inte2 + nJ(etZ(u)-l)F(du)j.

Take t.0,l/Cs). By O<tZ(u)<l we get

n J(etZ(u) )F(du) < 2nt Z(u)F(du) (27)

Take p > 0 so large that AcS O . Then, by Lemma 4, we have

Z(u) hrfu-hA lm(x) - m(u)Idx

< X(S 0 )fS u m(x) - m(u)Idx/A(Su,ho)
u,ho b1



-0 as h *0, for almost all x(A).

In view of (24), from the dominated convergence theorem, we see that

ZLm..,Lu)du) = 0. (28)
"mh--O

By (26) -(28), we can take t >0 sufficiently small such that

N

P{ Z(X) > Ine2} :< exp(-Jnte2  o(nt))

From (25) and (29). we obtain (23), and (14) follows. Up to now, the

theorem is proved.
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